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INTRODUCTION

The inductively coupled plasma (ICP) has shown itself to be an excellent
source for atomic emission spectroscopy. The number of papers published
since its inception illustrates the utility of the technique.] Much of the
ICP research today involves the use of smaller plasma tov-ches,z_5 lower
rf powers6 and argon flow r*ates,z_6 different plasma gases,G"8 and novel

9-16 11 in an effort to improve sensitivity

methods of sample introduction,
and precision and to reduce costs.

Many types of sample-introduction techniques have been explored for
use with the ICP. Prominent among these techniques are pneumatic nebulization

L Babington]z_14 devices)

(based on I‘«Ieinhard,]0 u]trasonic,]o cross-flow
and electrothermal methods (based on tanta]um—ﬁ]ament]5 and graphite-
furnace]6 systems). Unfortunately, these devices require rather large
volures of sample solution for reliable operation. This required volume
ranges from tens of milliliters for pneumatic nebulizers to 100 microliters
in the case of the tantalum filament vapom’zer.]5

In the present study, we explore the use of a "microarc” for sample
solution vaporization and introduction into the ICP. The microarc enables
the use of sample volumes between 0.1 - 10 ul and operates especially con-
veniently on volumes in the 0.5 - 2 ul range.

The microarc is essentially a high-voltage, low-current, atmospheric-
pressure, pulsating dc discharge which atomizes individual samples of metal

17

salts rapidly and completely. The arc combines high temperature and ion

sputtering to vaporize even refractory samples, so that matrix interferences

17,18

are minimized. These advantages accrue partially because the microarc

separates in time the processes of solvent evaporation, sample decomposition,

17-19 so each process can be optimized in efficiency.

and atomic vapor production,




The microarc was originally developed for use with a microwave-induced

17,18 where the ability to separate temporallv the process of sample

plasma,
desolvation from other atomization events is a great asset. The fundamental
operating characteristics of the microarc have been examined and described

elsewhere.]9

EXPERIMENTAL
Apparatus. A block diagram of the overall experimental system is shown
in Figure 1. The microarc electrode holders and arc stand, which have been

17,18 are constructed entirely of

modified from those previously described,
glass and are shown in cut-away view in Figure 2. The microarc sample elec-
trode (cathode, A in Figure 2) islconstructed from a loop of 0.25 mm (AWG
No. 30) tungsten wire which has been heat-sealed into a piece of glass tubing
(6 mm 0.d.). The glass tubing allows the electrode to be adjusted in the
arc stand much more easily than previous ar‘rangements”—]9 and adds rigidity
to the electrodes.

The microarc anode is constructed from a stgin]ess—stee] wire which is
affixed with epoxy into a piece of glass tubing (6 mm o.d., B in Figure 2).
A 24-gauge syringe needle with the end sealed provides a readily available
source of stainless steel wire. Because of the difficulty of heat-sealing
stainless steel wire into a glass tube, the glass tube was first constricted
by fire polishing, the anode wire slipped through it, and epoxied in place.
The anode wire extended 20 mm past the end of the glass tube.

The microarc stand was also constructed of glass. The two electrodes

are held in place by an o-ring and 'Ace Thred' (Ace Glass, Inc., Vineland,

NJ) fitting affixed to the end of 15 mm (o0.d.) glass tubing. The two holders

meet at a 90° angle; this arrangement permits easy alignment and replacement
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of the electrodes. The all-glass construction provides convenient viewing
of the arc and electrodes during sample placement and microarc operation.
Routine cleaning of the arc stand is also simplified by the all-glass con-
struction.

The samjle gas flows over the microarc electrodes and carries vaporized
sample rapidly into the ICP through the sample tube of the plasma torch. A
rubber septum (not shown in Figure 2) is attached to the arc stand at a
right angle to the plane of the electrodes to allow the sample to be applied
to the cathode without disruption of the sample-gas flow.

Desolvation of sample solution deposited on the cathode is accomplished
by ohmic heating of the cathode wire with a constant-current supply as pre-
viously described.]7 The power supply for the microarc discharge itself is

7 and operates at 1500 volts and 20 milliamps.

the same as previously described
For the present work the mechanical relay in the arc power supply was replaced
by a <alid-state device to eliminate electrical noise generated by the relay
contacts. The arc power supply was controlled by a laboratory~constructed

microarc timer, which enables the arc operating duration to be varied from

0.1 - 999.9 seconds in 0.1 sec increments. In operation, the desired arc

~ time can be controlled either manually by a group of thumbwheel switches

on the front panel of the arc timer or remotely through & parallel connector
on the back pan2l of the timer. The starting of the timer (and therefore

of the microarc) can also be controlled either from a front-panel push
button or remotely. Operationally, the arc timer consists simply of a
programned relay which in turn controls the on-off relay in the microarc

power supply.

ICP. A conventional ICP torch (20 wm o0.d.) operating from a 27.12

MHz power supply (Model 2500, Plasma-Therm, Kresson, NJ} was used for the




present work. Operating conditions of the ICP are listed in Table 1. The
plasma was imaged 1:1 onto the entrance slit of a monochromator (Model
EU-700, GCA McPherson, Acton, MA) by means of a 5-cm diameter quartz lens
(f = 10 nm). The dispersed radiation was detected by a photomultiplier
tube (1P28, RCA, Lancaster, PA), converted to a proportional voltage and

amplified (Model 244, Keithley Instruments, Inc., Cleveland, OH).

Reagents. Stock solutions were prepared as described by Dean and Rains.20

A1l salts and acids were reagent-grade and water used in dilution was distilled-

deionized.

Data Collection and Control. A MINC-11 Laboratory Computer (Digital

Equipment Corp., Maynard, MA) was used for all experimental control and data
collection. The computer system was operated under MINC BASIC (Digital
Equipment Corp.), chosen for its simplicity in generating graphical repre-
sentations of collected data on the terminal screen. The role of the computer
can best be understood from the instrument block diagram (Figure 1) and from
a « -ription of a typical data-collection sequence.

Once the control program is started, the computer prompts the operator
via a CRT for identifying information, such as sample name and desired
element and wavelength. The time period desired for microarc operation is
also entered by the operator, who then places the sample onto the sample
cathode using a microliter syringe (Model 7101N or 7105N, Hamiltcn Co.,

Reio, NV). The computer is informed of the sample volume and, for the
determination of working curves or detection limits, the sample concentration.
The computer then waits a period of time {usually 30 seconds) for the

sample to be desolvated by the heated sample elecirode. The desired arc

"on" time (usually 5 seconds) is loaded by the computer into the microarc

.




timer through its Digital Out module. The timer is started and, at the same

time, data collection is begun by the computer. Data are collected using
the MINC Pre-anplifier and Analog-to-Digital Converter modules during'the
entire period of time that the arc is on.

The starting of the microarc timer results in automatic striking of
the micrecarc by means of a high-voltage pulse supplied by the arc power

17 The sample is then sputtered from the cathode surface by the micro-

unit.
arc, destroying the semple matrix and liberating atomic vapor. The atomic
vapor is swept through the ICP torch sample tube and into the plasma by the
sample gas passing over the arc.

After the resulting atomic emission peak is recorded, the collected
data are displayed on the terminal screen in a graphic (time vs. emission
intensity) form. After a few seconds for arc cooling and data manipulation,
the arc is restruck, following the same procedure as during sample vapori-
zation. However, no sample is added to the electrode for this second sequence,
so a background time-profile is obtained. A typical set of signal and back-
ground curves is shown in Figure 3 for a 1 ng (1 uL of 1 pg mL™') sample of
copper.

17,18 that the difference in areas between the

1t was found previously
signal and background curves in Figure 3 should be proportional to the sample
mass. The signal area (integral) is found by summing the data points for
the analyte (curve A of Figure 3) and subtracting the sum of the background
data points (curve B of Figure 3). The computer saves all the recorded data

on its floppy disk and calculates detection 1imits and working curves using

the collected data.




RESULTS AND DISCUSSION

Plasma Viewing Region. The imaging optics employed in this work permit

only a 1-cm vertical portion of the plasma to be viewed at any one time.
This limitation necessitated the determination of the optimal viewing height
and sample-gas flow rate before the analytical utility of the ICP-microarc
combination could be evaluated.

Figure 4 shows the effect of sample-gas flow rate on the observed signal
from 10 ng copper at three different viewing heights in the ICP. Each measure-
ment plotted in Figure 4 is the mean of ten successive determinations. The
maximum signal (analyte minus background integrals) was found to be in the
region from -2.5 mm to 7.5 nm, referenced to the top of the plasma load
coil and at a sample-gas flow rate of 1 L/min. The spatial behavior of

21,22 for the

Figure 4 is similar to that reported by Blades and Horlick
ICP. The effect of flow rate most likely results from a combination of *
analyte diffusion and dilution effects, with diffusion predominating at

lower gas-flow rates and dilution at higher rates. The optimal conditions

in Figure 4 (1 L/min Ar flow and -2.5 to 7.5 mm viewing region) were employed

for all later determinations. Interestingly, the same optimal viewing

region was found using a pneumatic nebulizer operating at the same gas-

fiow rate.

Detection Limits and Working Curves. Detection limits were determined

at the 95% confidence level from the signal-to-noise ratio.23 In turn,

the signal was defined as the integral (area) of the sample trace minus
the integral of the background trace; the noise level was calculated as
the standard deviation of the areas of ten background traces. No blank

was needed; not surprisingly, it was found that the desolvated blank (usually

i......._..______._ —— .




water) resulted in the same signal as generated by the bare electrode itself.
Cetection limits were computed by extrapolation to a signal-to-noise ratio
of 2.262 (o = 0.05, N = 10).°3

Table II lists detection 1imits for a number of elements using the
microarc-ICP combination. The values are presented in terms of both analytle

15,24 From

mass and concentration to simplify comparison to other work.
these results, the microarc-ICP system is capable of concentration detection
limits which are comparable to those of methods which require much larger
sample volumes and sample masses. The poor detection 1limit for iron results
from a high background noise level at the analyte line.

Linear calibration curves for the microarc-I1CP system range over 5-6

orders of magnitude for most elements. A typical set of calibration curves

is shown in Figure 5.

Interferences. To examine the susceptibility of the microarc-ICP
combination to interferences, two classical interference systems were examined:
that of sodium on calcium and that of phosphate on calcium. Both studies
were conducted using 10 ug mL™! calcium solutions with added amounts of
sodium (as NaCl) or phosphate (as H;P0,). The results of these studies
are shown in Figures 6 and 7.

The flatness of the calcium-phosphate curves (cf. Figure 6) indicates
the freedom from matrix interferences which the microarc~ICP arrangement
provides; this finding is consistent with that shown from previous work in

17,18 In contrast, some effect of added sodium

a microwave-induced plasma.
on calcium emission exists (cf. Figure 7) but the influence flattens out
at approximately a two-to-one ratio of sodium to calcium. This behavior
is similar to that observed with other ICP sample-introduction devices,

but the flattening of the interference curve (cf. Figure 7) occurs here




-
at a nwuch lower sodium-to-calcium mtio.3’J Several alternatives might

exist to eliminate this interference: the first would be to add excess
sodium to all samples and standards; the other possible solution would be
to optimize the viewing region for minimization of this interferencem’22

rather than for maximization of signal-to-noise ratio.

Precision. At elemental concentrations at least twenty times the
detection limit, the microarc-ICP combination exhibits a relative standard
deviation of from 1 to 5% depending on the element. Many factors appear
to affect this precision, although the most important is the purity of the
sample-gas argon. Bottled argon decreases the stability of the microarc
more than liquid argon. The sample electrode material and shape also affect

precision although the reason for this influence is not yet c]ear'.]9

Determination of Several Elements in NBS SRM 1571 Orchard Leaves. To

assess the practical utility of the microarc-ICP combination, the determination
of several elements in a "real" sample was undertaken, Table III lists the
determined values for three elements along with the corresponding certified
vaiues for NBS SRM 1571, Digestion of the sample was by standard methods,25
with nothing additional being added to the sample. A1l concentrations were
determined from calibration curves. The results indicate that the microarc-

ICP combination performs with good sensitivity and accuracy in the routine

analysis of a biological material.

CONCLUSTONS
The use of the microarc atomizer as a sample introduction device for
the ICP is attractive for small sample volumes, since little sensitivity

and precision are lost. Yet, microliter sample sizes can be used. The




10

microarc-ICP combination should be well suited for analyses where only small
volumes of sample are available, such as biological applications, but where

high sensitivity is desirable or necessary.
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Table I. General Operating Conditions
for the Microarc-1CP

rf power 1.25 kW
gas flows, L min~!
coolant 17.5
plasma 0.4
nebulizer (a) 1.0

Monochromator entrance and
exit slits

50 ym x 5 mm

PMT supply voltage 800 Vv
Time constant of detection
system 30 ms

(a) See text for discussion
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Table III. Analysis of NBS Standard
1571 Orchard Leaves

Element wav?lﬁ?gth Pres?3€ %gudy Certi{;id%ya]ue
? Ca 393.6 2.10 2.09 *+ 0.03
% Mg 279.5 0.61 0.62 + 0.02
* Fe 259.9 296° 300 + 202
%i ‘
? | %L9/g

= oo o ————___J




Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure Captions

Block diagram of the Microarc-ICP Instrument. PMI - photomul-
tiplier tube; H.V.P.S. - high-voltage PMT power supply;
i-to-V amp - current-to-voltage converter. See text for

details.

Microarc stand, Electrode holders, and Electrodes.
A - sample cathode loop (tungsten)

B - Anode (stainless steel)

Typical emission-time curves for the microarc-ICP combination
obtained using 1 ng (1 uL of 1 ug/mL) copper (324.7 nm).
A - Sample emission curve

B - Background emission curve

Effect of viewing region and nebulizer flow rate on copper
emission (10 ng sample). Heights measured relative to the
top of the ICP load coil.

0 —+3.5 mm to +13.5 mm

+ - -2.5 mn to +7.5 mm

* — =10 mm to O mm

Typical working curves for Microarc-ICP System. Note:

curves for Cu and Fe are nearly congruent.

* - Cu (I} 324.7 nm
X - Fe (II) 259.9 nm
+ - Mg (II) 279.5 nm
0 - Na (I) 589.0 nm




A1l working curves have been extrapolated to include the

detection limit.

Figure 6. Phosphate Interference on 10 ug mL™' Calcium., Ca (II) -
‘ 393.4 nn.
Figure 7. Sodium Interference on 10 pg mL~! Calcium, 1

0 - Ca(I) 422.6 nm
x - Ca (II) 393.4 nm
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